Recent results on stationary critical Kirchhoff systems in closed manifolds
نویسندگان
چکیده
منابع مشابه
Iteration of Closed Geodesics in Stationary Lorentzian Manifolds
Following the lines of [8], we study the Morse index of the iterated of a closed geodesic in stationary Lorentzian manifolds, or, more generally, of a closed Lorentzian geodesic that admits a timelike periodic Jacobi field. Given one such closed geodesic γ, we prove the existence of a locally constant integer valued map Λγ on the unit circle with the property that the Morse index of the iterate...
متن کاملOn Some Recent Results about Inertial Manifolds and Kinematic Dynamos
The conditions imposed in the paper [’Inertial manifolds and completeness of eigenmodes for unsteady magnetic dynamos’, Physica D 194 (2004) 297-319] on the fluid velocity to guarantee the existence of inertial manifolds for the kinematic dynamo problem are too demanding, in the sense that they imply that all the solutions tend exponentially to zero. The inertial manifolds are meaningful becaus...
متن کاملwind farm impact on generation adequacy in power systems
در سال های اخیر به دلیل افزایش دمای متوسط کره زمین، بشر به دنبال روش های جایگزین برای تامین توان الکتریکی مورد نیاز خود بوده و همچنین در اکثر نقاط جهان سوزاندن سوخت های فسیلی در نیروگاه های حرارتی به عنوان مهم ترین روش تولید توان الکتریکی مطرح بوده است. به دلیل توجه به مسایل زیست محیطی، استفاده از منابع انرژی تجدید پذیر در سال های اخیر شدت یافته است. نیروگاه های بادی به عنوان یک منبع تولید توان...
15 صفحه اولPeriodic trajectories on stationary Lorentzian manifolds
In this paper we present an existence and multiplicity result for periodic trajectories on stationary Lorentzian manifolds, possibly with boundary, whose proof is based on a Morse theory approach, see [5]. We recall that a Lorentzian manifold is a smooth connected nite-dimensional manifold M equipped with a (0; 2) tensor eld g such that for any z ∈ M g(z) [·; ·] is a nondegenerate symmetric bil...
متن کاملSome Differential Equations on Closed Manifolds
where o0, • • • , an are constants, d and 5 are the differential operators used by de Rham and Kodaira [l ], and a is a differential form defined on a manifold M. Assuming that If is a closed, orientable Riemannian manifold of class C°°, it will be shown below that equations (1) and (2) have solutions only for some special values of a0, ■ ■ • , an, and their solutions are always linear combinat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Séminaire Laurent Schwartz — EDP et applications
سال: 2013
ISSN: 2266-0607
DOI: 10.5802/slsedp.64